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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

ANAT.YSTS OF THE LIQUiD—METAL TURBOJET CYCLE FOR
PROPULSION OF NUCLEAR POWERED AIRCRAFT

By William W. Wachtl and Frank E. Ron

SUMMARY

An anelysis of the miclear powered liguid-metal turbojet cycle is
presented for s wide range of engine operating conditions at flight
Mach numbers of 0.9 and 1.5, and at altitudes of 30,000 and 50,000 fret.

The method of analysls and working charts are presented to facili-
tate investigations beyond the scope of this report.

The thrust per engine plus heat exchanger welght is optimized at
the four flight condlitions for heet exchanger inlet Mach number,
compressor pressure ratio, and turbine-inlet temperature for a range of
liquid-metal-to-alr heat exchanger effective wall temperatures.

Airplane gross weight and reasctor heat release 1s presented for
typical values of alrplane 1ift-drag ratio, structure to gross weight
ratio, and sum of reactor, shield, payload, and suxilliary weights. The
effect of varylng these assumptions and of lncluding nacelle drag is
shown along with the effect of flight conditions.

INTRODUCTION

Analyses are belng made at the NACA Lewie lasborstory to determine
the characteristics of varilous aircraft propulsion systems utilizing
muclear energy. A study of the direct-alr turbojet cycle was made in
reference 1 and additional results of this study are presented in
references 2 and 3. A preliminary comparison of the direct ailr, helium,
and liquid-metsl turbojet cycles is made in reference 3.
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The present report glves an analysis of the design point perform-
ance of nuclear powered liquld-metal turbojet engines. The variables
consldered are turbine-inlet temperature, compressor pressure ratio,
liquid-metal-to~alr heat exchanger wall temperature, heat exchanger
air inlet Mach nmumber, altitude, and flight speed. The compressor
pressure ratio, heat exchanger inlet Mach number, and turbine-inlet
temperature were optimized for maximum engine net thrust per engine plus
heat exchanger weight at several values of hesat exchanger effective wall
temperature. It 1s shown that for fixed values of airplene lift-drag
ratlio, and structure to gross welght ratio, the thrust per engine plus
heat exchanger weight is the most important perameter in determining
gross welght. Inasmuch as this parameter 1s so important, and because
of the uncerteinty in the lift-drag ratio attalnable at supersonic
speeds, 1in shield and suxililary weights, and in allowable reactor heat
release rates, engine performance 1s emphasized in this report. How-
ever, curves are presented which enable raplid determinstion of airplane
gross welght for any set of shield and guxiliary welghts, payload,
structure to gross weight ratio, and airplane l1i1ft-drag assumptions.

In addition, curves of heat input per pound of air and net thrust per
pound of air per second are presented to enable the determination of
reactor heat release necessary to operate the required turbojet engines.

Airplane gross welght and reactor heat release are calculated for
several £flight conditions for various engine operating conditions.
Typlcal values of shield, asuxiliary equipment, and payload weights,
and aerodynamic assumptions were selected to facilitate these calcu~
lations. The effect of varying the assumptions necessary to calculate
gross weilght and reactor heat release from englne data ls presented.
In addition, the effect of varying flight conditions upon gross weight
and reactor heat release is slso indicated.

SYMBOLS
The followlng symbols sre used in this report:
A ares, ££2
specific heat at constant pressure, Btu/lb °R
Cp Adrag coefficient
Cy nozzle veloclty coefficient
d hydraulic diameter of tubes, £t

D drag, 1b
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free Plow ratio, flow area dilivided by frontal area

thrust, 1b
acceleration due to gravity, ft/sec?
enthalpy, Btu/1b

air enthalpy change, Btu/1b

778 £t-1b/Btu

thermal conductivity, Btu/sec ft2 °R/ft
tube length, £t

1ift, 1b

Mach rmumber

static pressure, l'b/ft2

total pressure, 1b/ft2

paV,
2 : , 1b/f£t2

dynemic pressure,

reactor heat release rate, Btu/sec
total temperature, ©R

total temperature change, Or

over-all heat transfer coefficient, Btu/sec £t2 OR

reactor volume, ££5
velocity, ft/sec
welght flow, lb/sec

welght, 1b

ratio of total pressure to NACA standard sea level static pressure,

==
2116
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T ratio of specific heats

o viscosity, 1b/ft-sec -~ -

o denmsity, 1b/ft>

e ratio of total temperature to NACA standard ses level static
temperature, 3%5 - '

Subscripts:

a alr flow

c compressor

e engine

f frontal . _— e : : e e .

g gross

J Jet -

K shield + reactor + payload + auxiliery

2 liquid metal

n net —— - . e -

N nacelle

r reactor

m reactor maximum wall

8 structure

t turbine . -

T engine plus heat exchanger

W exchanger effective wall

X exchanger

|

PLIZ
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¥ reactor~-wall-to-ligquid metal

© small stage

0 free stream

1 compressor inlet

2 compressor outlet

2' inlet to heat exchanger (in tubes)
3 turbine inlet

4 turbine outlet

DESCRIPTION OF THE CYCLE

A schematic diagram of the ligqulid-metal turbojet cyecle is shown
in figure 1. It is & binary system incorporating a closed liquid cycle
and an open alr cycle. A muclear reactor is used as the heat source,
and a heat exchanger replaces the standard engine combustion chamber.

The liquid-metal coolant is pumped through the reactor where it is
heated by contact with walls of the reactor flow passages. From the
reactor the liquid metal flows through the heat exchenger where it gives
up energy to the air; it is then ducted back to the reactor thus com-
pleting its cycle.

Alr enters the diffuser of the turbojet engine, is compressed by
the compressor, snd then passes through the heat exchanger taking heat
from the liquid metal. This hot compressed air expands through the
turbine which extracts the required energy to run the compressor. The
air then expands through the exhaust nozzle to provide the propulsive
thrust. :

ASSUMPTIONS

Engine component efficiencies. - In the present analysis the
efficlencies agsumed for the engine components sre, insofer as possible
representative of the best current practice. The values used are as
follows:
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Compressor small-stage efficiency, 0.88
Turbine adiabatic efflciency, .20
Exhaust nozzle velocity coefficient (full expansion), .97

The inlet diffuser characteristics are shown in figure 2 where the
ratio of actual to theoretical total pressure is plotted against
flight Mach number. The subsonlc portion of the curve assumes a 0.08
qo loss in dynamic pressure, and the supersonic portion was obtalned

from reference 4.

Engine welght. - The engine welght per pound of corrected alr flow
is shown in figure 3 as a functlon of compressor pressure ratio. The
curve was obtalned from an NACA weight analysis of turbojet engines
and includes all engine components except the combustion chambers.

The ailr flow per unlt compressor frontal aree is assumed to be 25 pounds
per second per square foot corrected to static sea level conditions and
is assumed to be independent of engine size for thie analysls.

Heat exchanger. - The liguid-metal-to-air heat exchanger is assumed
to be of the tubular counterflow type with air flowing through the tubes,
and ligquid metal flowlng in the spaces between the tubes. The welght
is computed assuming that the tubes are made of stalnless steel having
an internal diameter of 0.25 inch end a wall thickness of 0.0l inch,
and that the space around the tubes is filled with lithium. The weight
of the shell, headers and baffles is Included. The exchanger free flow
factor Aa/hf is 0.65. The exchanger is assumed to have a constant

effective wall temperature. The exchanger l/d expressed in the para-

.2

meter [(A—e'—pz)o (l)] (from reference 5) is shown in figure 4 as =
Wy d allx

function of alr inlet temperature, air cutlet temperature, and exchanger

effective wgll temperature. The heat exchanger air pressure drop

expressed as the ratio of the outlet total pressure to air inlet total

pressure is shown in figure 5. The pressure ratio 1s plotted as a

function of air inlet temperature, air outlet temperature, and exchanger

effective wall temperature for air inlet Mach rumbers of 0.12, 0.1§,

and 0.20 which cover the range of values investigated.

The assumption of an effectlive wall temperature greatly simplifies
heat transfer celculations with no loss in accuracy. Only a negligible
error in heat exchanger pressure ratlo is introduced by this assumption.

Reactor maximum wall temperature. - The reactor maximum wall
temperature is computed by making the following assumptioms: (1) the
heat exchanger effective wall temperature is equal to the average of
the inlet and ocutlet liquid-metal temperature; {2) that the difference
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between the reactor well temperature and liquid-metal temperstures is
constant; and (3) that the liquid-metal temperature rise is fixed for
each flight condition so that the liquid-metal velocity is 15 feet
per second at optimum engine conditions.

Reactorn, shield, and suxilisry welghts. - A fixed value of
190,000 pounds 1is assumed for Wy, the sum of the reactor, shield

assembly, payload, and auxiliary welghts (pumps, piping, chemical fuel,
ete.). This weight was arbitrarily assumed in order to calculate
typical alrplane gross welghts from the engine data. Assuming a fixed
value of Wg allows a wide latitude of weight distributions among

the components of Wg. Inasmuch as gross welght is & direet function
of Wk, the gross welght for any other desired value of WK can easily
be found. The effect of selecting different fixed values of Wg is
shown later in the report.

For any glven resctor size, reference 6 indicates a negligible
variastlion of shield weight with reactor heat release Q. $Since this
is true and since the payload and suxiliary weight are relatively fixed,
noc variation of Wx with @ 1s considered.

Alrplane sssumptions. - The structure to gross weight ratio WS/Wg,
of the airplane in general 1z assumed to be 0.35 for the gross welght
computations. The alrplane design L/D, exclusive of nacelles, is
assumed & function of Mach number asg follows:

Mach mumber L/D

0.9 18
1.5 9
2.0 5.5

Variation of structure to gross welght ratio Wg/Wg, and L/D from the
above values is considered later in the report.

Nacelle drag Dy, 1s generally considered to be zero, however, in

cases where Dy 1s included, the effect is shown for the following
range of drag coefficients:

Subsonic Cp,N» 0 to 0.08
Supersoniec Cp,N, O to 0.4

The alr flow per unit nacelle frontal ares, corrected to static sea
level conditions 1s assumed to be 15 pounds per second per sguare foot
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compared to 25 pounds per second per square foot of compressor frontal
area. This assumption accounts for structure space.

METHODS

The turbojet cycle as presented in this enalysis is optimized for
maximum net thrust per engine plus exchanger welght. It 1s shown in
the following discusslon thet this parameter gives the minimum airplane
gross welight for fixed values of alirplane L/D, structure to gross
welght ratio Ws/Wg, and the sum of reactor, shield assembly, payload

and auxiliary weights Wg.

Welght Balance

The gross welight of an airplane 1s equal to the sum of all the
component weights. )

Wg= WK+WB + We + Wy (l)

These welghts can be separated into two groups: (l) weights relatively
independent of gross weight; and (2) weights dependent upon gross

weight. The first group comslsts of the sum of reactor, shield assembly,
payload, and suxiliary weight Wyg, where the auxiliary welght includes
such items as the control equipment, pumps, piping, and auxiliary fuel
redquired for thrust augmentation. Group two consists of the aslrcraft
structure welght, engine weight, and heat exchanger weight Wg + We + Wx.

The structure weight is given by
WS)
Ws = (ﬁg Vg (2)

The engine welght plus heat exchenger weight is

W
We+wx=wT=F£'g'£ (3)
Wr *D
where o ) . L.
Wg Vo
Fn=Fy - —— - Dy (4)

CBmIT?
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Combining equations (1}, (2), and (3)

WK
We = (5)
g Ws B

@

Inspection of equation (5) shows that the gross weight is a minimm
when the net thrust per engine plus exchenger ls a maximum for fixed
values of Wg, Wg/Wg, and L/D, consequently a study of engine performence
is sufficient for evaluating a given cycle in & nuclear powered airplane.
The analysis presented in this report optimizes Fn/WT and is therefore
not restricted by particular weight and airplane assumptions.

Cycle Anslysis

The performance of the turbojet cycle with & heat exchanger in
lieu of the conventional burners is calculated for a range of flight
and engine wvarlables in order to obtain optimum engine performance.

The flight conditions investigated are flight Mach numbers of 0.9 and
1.5 at altitudes of 30,000 and 50,000 feet. The compressor pressure
ratio is varled from 2 to 15; the turbine-inlet temperature from 1200°
to 2500o R; the heat exchanger effective wall temperature from 1400° to
2600° R; and the heat exchanger inlet Mach numbers from 0.12 o 0.20.

The stations in the cycle are numbered according to the diagram in
figure 1.

Celculation of net thrust per pound of air per second, Fn/wa. -
The compressor lnlet temperature T;, and pressure P, were determined
at the assumed flight conditlons and corresponding diffuser pressure
ratio Pl/Po (fig. 2). The enthalpies at each station and the tempera-
ture rise through the compressor corresponding to the selected pressure
ratio, were determined from the thermodynamic property tables and
methods presented in reference 7. The compressor work per pound of
air 1s then

Abe = hp - hy, Btu/lb air

The compressor cutlet temperature Tz, and pressure DPp, are identical

to the heat exchanger inlet temperature Tz', and pressure Pg'. Know-

ing the heat exchanger inlet temperature, and with assumed values of
inlet Mach pumber MQ » heat exchanger effective wall temperature Ty,
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and turbine-inlet temperature T3, the heat exchanger pressure ratio
Pz/Pp, is found from figure 5. The turbine work is equal to the
compressor work, so the turbine exit enthalpy 1s

by = hz - Ah,, Btu/lb air

The turbine outlet temperature and the turbine pressure ratlo are found
by the charts and methods of reference 7. The tall-pipe pressure ratioc
is then

Po _Pp F3 P2 B T

—_ X

Po P53 Pz P Py Do

The Jjet thrust per pound of elr Fj/wa, is a function of tail-pipe

pressure ratlo and the square root of the tail-pipe temperature, and is

obtained from the followling equation for a complete expansion process.

The net thrust per pound of air Fn/wa, is obtained by dividing equa-
tion (4) by wa

2-A2.2- (6)

Where the nacelle drag per pound of air per second DN/wa is defined
by

Dy _ Ar 8o\ 4%
T T DN @ Wa'\/5<_>>N 80 ™

Ar 8o
frontal area (15 lb/sec-sq £t). The effect of nacelle drag is not
included in the general englne analysis, but is Introduced later in
the discussion to show the effects on airplane performance.

W
where (_EAZE§) is the corrected alr flow per unit nacelle
N

The preceding methods were used to celculate & set of generalized
berformance charts which were used in the actual anslyeis. These
charts have been Included in appendix A.

¥L12



2174

NACA RM E51D30 L 11

Engine plus heat exchanger weight. - The welght of the turbojet
engine less combustors per pound of air per second Wé/wa, is found
from figure 3 at the desired compressor pressure ratlo. The heat
exchanger welght per pound of air per second is a function of the
exchanger air flow per unit area (wgy/Ag)x and the exchanger 1/d

as glven by

W
X _1.9 (EE x = (8)
Va Wg,  d/y

where the constant 1.9 1s evaluated from the assumption of stainless
steel tubes, with lithium filling the spaces between the tubes.

The exchanger ailr flow per unit flow area is found from the
exchanger inlet conditions P21, T21', and M%t. The heat exchanger
O.
1/d is found from the parameter, [ éE-EE) (})] shown in figure 4.
wg d d/ix
The hydraulic dilameter 1s assigned and the viscosity py, 1s evaluated

at the effective wall temperature Ty. The engine plus exchanger
weight per pound of air per second Wp/wa, is then the sum of We/wa
and Wy/wg.

Thrust per pound of engine plus exchanger. - The thrust per pound
of engine plus exchenger is calculated from the net thrust and engine
welght per pound of air per second.

o _ n/Va (9)
Wp  Wp/Va

The Fn/WT is plotted as a function of turbine-inlet temperature, heat
exchanger inlet Mach mumber and compressor pressure ratlo for sgll the
Plight conditions considered.

Heat input. - The heat input to the turbojet is found by subtract-
ing the enthalpy et the compressor outlet hg, from the enthalpy at
the turbine inlet hsz. '

Ahy = hz - hy, Btu/lb air

Airplane gross welght. - The method of determining engine perform-
ance in terms of Fp/Wa, FD/WT, and Ahy has been given. In order to
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translate this engine data to alrplane performance, certaln assumptions
regarding airplane 1ift drag L/D, structure to gross welght ratio
WS/WS, and the sum of shleld, resctor, payload, and auxiliary weight
Wg, must be made. -If values are assigned to these quantities, equa-
tion (5) can be used to calculate airplane gross weight. Figure 6 has
been prepared from equation (5) so that Wg can be found more con-
veniently. Wg/Wx 1s plotted as a function of thrust per engine plus
exchanger weight Fp/Wp, for a range of L/D and for wg/wg equal to
0.35. The airplane gross welght is found by multiplyling the ordinate
evaluated at the dssign Fp/Wp and L/D by the assigned value of Wg.

Engine air flow. - The air flow requiréd for a given alrplane is
found from the gross welght Wg, L/D, and net thrust per pound of air

per second Fn/wa, by the relation

ve = —8 (20)
a = 10
L Fn
— x ——
D Wg,
Reactor Calculations
Heat release. - The heat release rate required from the reactor,

neglecting losses, is obtained by multiplying the enthalpy rise per
pound of alr through the heat exchanger by the engine air flow

Q = Ahy wg, Btu/sec (11)

Inasmich as the heat losses 1n piping and heat required for running
the pumps and auxiliaries are chiefly a function of the individual
Installation, no attempt was made to include these reguirements in the
heat release curves of this analysis. In order to account for these
quantities, the heat release required of the reactor must be increased

accordingly.

Reactor maximum wall temperature. - The reactor maximum wall
temperature is determined by the liquid-metsl temperature rise through
the reactor AT;, the average liquid-metal temperature (assumed to be

Tw), and the reactor-wall-to-liquid-metal temperature difference ATy,

®ITZ
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Reactor wall

temperature ATY
f
T 1/2 ATy
W
ATy
l Heat exchanger wall temperature 1

In determining reactor maximm well temperature Ty, the heat exchanger
effective wall temperature Ty, ls assumed to be the average llquid-

metal temperature. A constent temperature difference based on the
assumptions of constant heat generstion along the reactor length is
assumed between the resctor wall and liquid metal. The equation for
calculating the maximum resctor wall temperature is then

Tp = Ty + 1/2 ATy + ATy (12)

where L

_ Q
211 = ToVop)y (FAg)

and

AP = —S
1
4UZQTmH91'

where from reference 8,

k.
d‘r

Equation (12) then becomes

-]

va o\ 08
+ 0.025 %-E)Z

) 1/Q 1 1
Tm =Ty + 5 ( ) +
m= T 2 \fhe/r ((oVep); ZUX;)
d/r

(13)

For each flight condit{on, the liquid-metal temperature rise is held
constant at a value which gives & liquid-metal wveloclity of 15 feet per
second at the optimum compressor nressure ratic and turbine-inlet

temperature.
L]
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RESULTS AND DISCUSSION

The performasnce of the liquid-metal muclear-powered turbojet
cycle is presented by first discussing englne performance and the
effect of design varisbles on engine performance. The engine perform-
ance is emphasized in this report, however, a dlscussion of the
performance of the slrplane-engine combination in terms of airplane
grose welght and reactor heat release 1s also considered. The
remsinder of the dlscussion i1s concerned with the effect of changing
airplane and weight assumptions on alrplane gross welght and reactor
heat release.

Engine Performance

The net thrust per englne plus heat exchanger weight of the turbo-

Jet engine is optimized for exchanger inlet Mach number, compressor
pressure ratio, and turbine-inlet temperature for E.range of heat
exchanger effective wall temperatures. The data are presented for
altitudes of 30,000 and 50,000 feet, and for f£light Mach numbers of

0.9 and 1.5. In addition, net thrust per pound of alr per second and
air enthalpy rise through the heat exchanger are shown for the corres-
ponding engine and flight conditions to completely specify engine

performance.

Heat exchanger inlet Mach munmber. - The effect of heat exchanger
alr inlet Mach mamber on thrust per engine plus heat exchanger weight
is illustrated in figures 7(a) and 7(b) for an altitude of 30,000 feet
and at £flight Mach mumbers of 0.9 and 1.5, respectively. For each
assumed value of heat exchanger effective wall temperature and turbine-
inlet temperature there is a value of inlet Mach number which glves
maxinmmim Fn/WT. For a fixed value of T3z, low inlet Mach number glves
low pressure drop and comnsequently higher thrust, but also high
exchanger weight due to the large frontal area required. High inlet
Mach mumbers result in high pressure drop reducling the engine thrust,
but also giving low exchanger welght due to the smaller frontsl area.
Consequently, & heat exchanger inlet Mach mumber which gives a meximum
value of thrust per pound of engine plus exchanger weight 1s expected.
The optimum (1.e. meximum) velues of Fp/Wp are indicated in both

figures by cross marks.

The optimum inlet Mach mumbers range from sbout 0.14 to about 0.18
for all the compressor pressure ratiocs, turbine-inlet temperatures, and
exchanger wall temperatures shown for the flight Mach number of 0.9.

For the flight Mach number of 1.5 shown in figure 7(b) the optirmum
inlet Mach nuwmbers range from sbout 0.14 to sbout 0.22. Curves similar

PL12
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to thege were plotted for all the flight conditions and engine opera-
ting varigbles considered to determine the optimum exchanger inlet Mach
number for each condition end all the wvalues fell withln the ranges
shown on the figures.

Optimum compressor pressure ratio. - The net thrust per engine
plus heat exchenger weight for various values of exchanger effective
wall temperature, turbine-inlet temperature, and for optimum inlet
Mach number 1s shown as a function of compressor pressure ratio in
figures 8 to 11. The data are presented at sltitudes of 30,000 and
50,000 feet and for flight Mach numbers of 0.9 and 1.5. The corres-
ponding values of thrust per pound of air per second are also shown.
The solid lines represent constant Tz, and the dashed lines are the
envelope curves for maximum Fn/WT gt any pressure ratio. These
Tigures indicate that for each exchanger wall temperature and turbine-
inlet temperature there is an optimum compressor pressure ratio. For
all the heat exchanger and turbine-inlet temperature combinations
shown the optimum pressure ratio varies from about 3 to 8 for both
altitudes at a £light Mach number of 0.9. At a flight Masch number of
1.5 the optimum compressor pressure ratio varies from about 2.5 to 6
for both aeltitudes.

Optimum turbine-inlet temperature. - For each assumed heat exchanger

effective wall temperature T, there is a value of turbine-inlet
temperature which gives the maximum Fpn/Wp. The thrust per pound of
ailr per second is increased by increasing the turbine-inlet temperature
T3z, however, the exchanger pressure drop is also increased due to the
higher exchanger l/a required to obtain the higher Tz for a given

Tw. This Increased pressure drop with increasing l/d will eventually
counterbalance the increase in thrust due to the increased turbine-
inlet temperature. 1In addition, the exchanger welght lncreases due

to the larger 1/d, and consegquently there exlists an optimum turbine-
inlet temperature.

As observed in figures 8 to 11, the best turbine-inlet temperature
1s closer to the heat exchanger effective wall temperature Ty, at

lower valuee of Ty, than at the higher values of Ty.

Enthalpy rise through heat exchanger. - The enthalpy rise per unit
air flow through the heat exchanger correspondlng to the thrust per
engine plus exchanger welght 1s shown at the four flight conditions in
figures 12(a) to 12(d). The enthalpy rise is given as a function of
compressor pressure ratio for a range of turbine-inlet temperatures.
These curves are included at this point to completely define engine
performance, and thus conveniently group all the engine data necessary
for gross welght and heat release calculations together.
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Effect of heat exchanger effective wall temperature on optimum
engine performance. - The performance of the liquid-metal muclear-
powered turbojet engine is summarized in figures 13(a) to 13(d). Maxi-
mim thrust per engine plus exchanger weigh;n_gp/wT is plotted ageinst
the heat exchanger effective wall temperature Ty. The corresponding
velues of net thrust per pound of alr per second Fn/wa, heat addition
to the alr Ahy, optimum compressor pressure ratio Pz/Pl, optimm
turbine-inlet temperature Tz, and difference between the exchanger
effective wall temperature and coptirmum turbine-inlet temperature
Ty-T3 are also shown. For any Ty, the optimum engine performence is
readily obtained from these curves.

The optimum Pp/P; at altltudes of 30,000 and 50,000 feet for

optimm turbine-inlet temperature varles fram 4 to 7.5 for a flight
Mach mmmber of 0.9, and from 2.5 to 5.5 for a Mach number of 1.5.

The temperature difference Ty-T3 varies from 150° to 250° R for _

& Mach mmber of 0.9 for a rapnge of Ty from 1600° to 2400° R. At a
Mach mumber of 1.5, T,-Tz varies from 150° to 350° R for a range of
Ty from 1600° to 2600° R.

The optimum heat exchanger inlet Mach numbér Mor at optimm
Py/P; and Tz veries from 0.15 to 0.16 at a Mach mumber of 0.9, and

varies from 0.18 to 0.19 at a2 Mach mumber of 1.5. No noticable trends
with Ty were apperent, consequently no plot of optimum Mgr against

Ty 1= included.

Effect of. engine and exchanger welght on optimum thrust per pound
of engine and exchanger. - At & given value of heat exchanger effectlive
wall temperature the optimum compressor pressure ratio, heat exchanger
inlet Mach mumber, and turbine-inlet temperature for maxdmwum thrust per
pound of engine plus exchanger is not affected by the engine weight
assumption if the relative variation of engine weight with compressor
pressure ratio remeins unchanged from that given by flgure 3.

The optimum campressor pressure ratio, heat exchanger inlet Mach
number, and turbine-inlet temperature are also not affected by the heat
exchanger welght assumption (equation 8) as long as the exchanger
welght is assumed to vary directly with air flow aresa and length
diameter ratio of the passages. These changes in heat exchanger and
engine welght assumptions would change the magnitude of Fp/Wp but

would not change the optimm Py/P;, Mz:, or Tz.

YLTZ
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Alrplane Performance

The airplane performance for the liquid-metal turbojet is shown
in figures 14 to 17 in terms of airplane gross welght and reactor heat
release. For all the flgures presented the structure to gross weight
ratlo is assumed to be 0.35. The alrplane lifit-drag ratios at the
flight Mach mumbers of 0.9 and 1.5 are 18 and 9, respectively. The
sum of the sghield, reactor, payload, and suxiliary weights is assumed
to be 190,000 pounds. The reactor liquid-metal veloclty is 15 feet
per second for all the optimum conditlions shown.

Effect of compressor pressure ratio and turbine-inlet temperature. -
The effect of compressor pressure ratio and turbine-inlet temperature
upon alrplane gross welght and reactor heat release Is shown in
figures 14(a) to 14(d) for flight Mach numbers of 0.9 and 1.5 at
altitudes of 30,000 and 50,000 feet. The heat exchanger effective wall
temperature is 2000° R in all cases, and the turbine-inlet temperature
varies from 1500° to 1900° R. The reactor wall temperature correspond-
ing to the 2000° R heat exchanger effective wall temperature is given
in each case.

The liquid-metal velocity Vy, in figures 14(a) to 14(d) is
15 feet per second st the optimum compressor pressure ratio (minimum
gross weight). This V3 together with the reactor heat release @
at these optimum conditions determines the reactor maximim wall tempera-
ture Tp, for the fixed 2000° R heat exchanger effective wall tempera-
ture (equation 13). For the off-optimum Pz/Pl and T3, V; is varied
13 feet per second in order to malntain Tr-Tw constant.

Alrplane gross weight and reactor heat release for a flight Mach
mumber of 0.9 at altitudes of 30,000 and 50,000 feet are shown in
figures 14(a) and 14(b). The curves indicate that over the temperature
and pressure ratio range considered, the airplane gross welght is
insensitive to T3 and P2/P; at 30,000 feet (fig. 14(a)) but it is
somewhat more sensitive at 50,000 feet (fig. 13(b)). This ies true
because for the combination of the design L/b of 18 and the Fp/Wq

obtained, the airplane grose weight is relatively independent of Fn/WT
as Indicated in figure 6 except for wvery low wvalues of FD/WT. The
thrust per engine plus exchanger weight is higher at 30,000 feet than
at 50,000 feet and so gross welght is expected to be less sensitive

to compressor pressure ratio and turbine-initet tempersture at the lower
altitude. The minimam reactor heat release occurs at & compressor
pressure ratlio which is higher than the pressure ratio which gives
minimim gross welght. For both parts (a) and (b) of figure 14 the
reactor heat release is about equal, consequently the same temperature
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difference (50° R) exists between the reactor maximum wall tempera-
ture and Ty.

Parts (c) and (4) of figure 14 present the performance of the
alrplane at & Mach mmber of 1.5 for saltitudes of 30,000 and 50,000 feet.
The curves indlcate that even at the higher flight Mach number (with
lower L/D) the alrplene gross weight is Insensitive to T3z and
Pz/Pl at 30,000 feet altitude. This is due to the high thrust per
engine plus exchanger weight at this Mach mumber which mskes the alr-
plane gross weight relatively insensitive to variations in Fn/WT as
indicated in figure 6. At the higher altitude (fig. 14(d)) the gross
welght is more sensitive to T3 and Pg/Pl because of the lower
values of Fp/Wp. The minimum reactor heat release occurs at a higher
pressure ratio than the minimum gross weight as was the case at the
lower Mach numbers. The temperature dlfference Ty-Tyw, is higher than
for a Mach number of 0.9 because of the higher engine air flow required
and consequently greater reactor heat release necessary at & Mach mum-
ber of 1.5. At an altitude of 30,000 feet (fig. 1l4(c)), Tp-Tw 1s
100° R, and at an altitude of 50,000 feet (fig. 14(d)), Ty-Tyy is 150° R.

Effect of reactor wall temperature. - The effect of reactor wall
tempersture on airplane gross welght, reactor heat release, and heat
exchanger effective wall temperature for optlimim heat exchenger inlet
Mach mmber, optimim compressor pressure ratlc, and optlmum turbine-
inlet temperature is shown In figures 15(a} to 15(c). The flight
conditions shown are the same as have been considered previocusly.

The alrplane gross weight increases at an Increaslng rate as the
reactor wall temperature is reduced (fig. 15(a)). This rate of increase
ig not significant, however, untll a wsll temperature of 1600° R is
reached for both fllght Mach nmmmbers at 30,000 feet altitude. At
50,000 feet and & Mach mumber of 0.9, Wg is insensitive to Tp as low
as 1800° R, and at a Mach number of 1.5, Wg 1is insensitive to Tp &s
low as 2000° R. TIn general, lower altitudes and lower Mach numbers
require lower reactor maximum wall temperatures for a given gross
weight. For example, at & gross welght of 400,000 pounds, the required
reactor maximum wall tempersture is 1180° R at 30,000 feet altitude and
0.9 Mach rumber. The same gross welght requires a Tp of 1520° R at
50,000 feet altitude for the same Mach number. For a flight Mach num-
ber of 1.5 T, is 1420° R at 30,000 feet and 1880° R at 50,000 feet.

As is shown in figure 15(b), the reactor heat release correspond-
ing to minimm gross weight is relatively unaffected by decreassing Tp

until e value is reached at each flight condition where the reactor
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heat release increases very rapidly. This 1s to be expected because
the gross weight also increases very rapidly ln the same range of
reactor meximm wall temperatures.

The heat exchanger effective wall temperature Ty is shown as a
function of Ty in figure lS(c), so that the engine performance

(fig. 13) corresponding to the airplane performance shown in
figures 15(a) and 15(b)} can be determined.

From the foregoing figures and equations, a table has been prepared
and presented in appendix B which gives a more detailed listing of com-
ponent weilghts and reactor, engine, and heat exchanger variables than
has been shown. The table is prepared at the four flight conditions
for a heat exchanger effective wsll temperature of 2000° R and a turbine-
inlet temperature of 1700° R.- '

Effect of flight conditions. - The effect of flight Mach number and
altitude on eirplane gross welght and reactor heat release is presented
in figures 16 and 17. The curves are calculated for a heat exchanger
effective wall temperature of 2400° R, turbine-inlet temperature of
2000° R, compressor pressure ratio of 5, and optimum heat exchanger
inlet Mach number.

The altitude effect on gross weight and reasctor heat release is
shown in figure 16 for flight Mach numbers of 0.9 and 1.5. The gross
welght and reactor heat release are relatively lnsensitive to altitude
from O to 35,000 feet. Above 35,000 feet the reactor heat release and
gross welght increases very rapidly.

The effect of flight Mach number on alrplene gross weight and
reactor heat release is shown in figure 17 for altitudes of 30,000 and
50,000 feet. The gross welght 1s relatively independent of Mach number,
however, the reactor heat release incresses quite rapidly with Msch
number chiefly because of the rapid decrease in sirplane L/D.

Effect of Varying Assumptions

The previous analysis is based on fixed assumed values of the sum
of the shield, reactor, payload, and asuxilisry welght, airplane 1ift-
drag ratio, and structure to gross weight ratio. In addition, all
the engine installations were assumed to be of the submerged type which
neglect the effect of nacelle drag. The magnitude of the effect of
taking into account different values of these assumptions and consider-
ing nacelle drag on airplane gross welght and reactor heat relesse is
shown in figures 18 to 21 for two turbine-inlet temperatures. The
effect of reactor dlameter on unit heat release 1s shown in figure 22.
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Effect of sum of shield, payload, and asuxiliery weight. - The -
effect of varying Wx on alrplane gross weight and reactor heat release

is presented in figure 18 for an altitude of 50,000 feet and & Mach
number of 0.9. The vertical deshed line indicates the constant
190,000 pound value of WK assumed in the previous enalysis. The
curves for two engines are presented; one engine having a heat
exchanger effective wall temperature of 2000° R and a turbine-inlet
tempersture of 1700° R; the other engine having a T, of 2400° R,

end a Tz of 2000° R (Tp depends on Wg and Q). The optimum values
of compressor pressure ratlo and heat exchanger inlet Mach mumber are
used. The airplane gross weight varies directly with the value of WK
as has been discussed and shown previously in equation (7). The
required reactor heat release glso varles directly with W dInssmuch

as Q varies directly with Wg at a glven engine operating point. -

s Zavd

Bffect of structure to gross weight ratio. - The effect of vary-
ing the structure to gross weight ratio Wg/Wg, on alrplane gross
weight and reactor heat release is presented in figure 19 for the same
engine and flight conditions shown 1n the previous figure For a
reduction in Wg/Wg of Q.35 to 0.30 (14.2 percent) the gross weight .
and reactor heat release decrease sbout 9.0 percent. The vertical

dashed line represents the WS/Wg of 0.35 used ip the previous analysis.

Effect of sirplane 1lift-drag ratio. - The effect of verylng the
alrplane design point lift-drag ratioc on airplane gross weight and
reactor heat release is shown in figures 20(a) and 20(b) for flight
Mach mumbers of 0.9 and 1.5 at an altitude of 50,000 feet for the same
engine conditions as in the previous figures. At a flight Mach number
of 0.9 reducing the L/D from 18 to ebout 10 causes a relatively small
increase in gross welght. Reducling the L/D further results in a very
rapid increase in gross weight. The level of cycle temperature opera-
tion has & small effect on gross welght at high L/D values, but this
effect becomes large at values of L/D below zbout 10. Reactor heat
release 1is more sensltive to reduction in L/D and Increases guite
rapidly with reduction in L/D The level of cycle temperature opera-
tion has practically no effect upon heat release over the range of L/D
shown. At a flight Mach number of 1.5, figure 20(b), reducing the L/D
from 9 increases the gross weight rapidiy. Incressing the L/D from
9, however, causes & relatively smell reduction in gross weight. This
small effect of .L/D upon gross weight at values above 9 is due to the
higher thrust per engine weight at & fiight Mach number of 1.5. As in
the case of the flight Mach number of 0.9, the reactor heat release is
more sensitive to chenges in L/D than is gross weight.
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Effect of nacelle drag. ~ The effect of engine nacelle drag on
airplane gross weight as a function of reactor meximum wall tempera-
ture is presented in figures 21(a) and 21(b) for flight Mach mumbers
of 0.9 and 1.5, respectively at an sltitude of 50,000 feet. The
turbine-inlet temperature, heat exchanger inlet Mach number, and
compressor pressure ratio are optimum. The coefficient of necelle
drag Cp,N was selected to include & range of nacelle drag values
gt both Mach nmumbers. The coefficient inecludes the wave and friction
drag at a Mach number of 1.5. '

At e flight Mach number of 0.9 a nacelle having a drag coefficient
of 0.08, which is & reasonsble value at this flight condition, increases
the gross welght less than 10 percent for reactor maximum wall tempera-
tures as low as 1500° R. This effect increases rapidly for tempera-
tures below 1500° R.

At a flight Mach number of 1.5, nacelle drag becomes very import-
ant as 1s shown in figure 21(b) which indicates that neglecting nacelle
drag can be very misleading. The solid lines represent constant Cp,N,
and the dashed lines represent constant heat exchanger effective wall
temperatures. For a 500,000 pound airplane the resctor maximim wall
temperature must be increased from about 1600° to 2200° R if the
nacelle drag coefficient is increased from O to 0.2, which is a reason-
able value of Cp,y &at this flight condition. For a fixed alrplane
gross weight the nacelle drag reduces alirplane 1ift-drag ratio.
Consequently, the engine must operate at a higher temperature to over-
come the increased drag. The following teble listas L/D and Ty
against CD,N for one design polnt airplane.

Mo | Altitude Wg |Cp,N Fn 1/D

Ty
(£t) (1b) (°R)

1.5 | 50,000 | 372,000} 0 2000 |41,400| 9{design)
.2 | 2430 | 56,500 6.58
.4 | 2800 | 71,500 5.2

Effect of reactor size. - In the previous analysis and discussion
no speclfic assumptions have been made regarding resctor size or shield
welght. The sum of the weight of reactor, shield, payloasd, and sux-
iliary equipment wae arblitrarily assumed. Filgure 22 is presented in
order to show the effect of reactor size on reactor unit heat relesase
Q/v, and airplane gross welght. The reactor dlameter was varied from
2.0 to 5.0 feet, maintaining the length to diameter ratio of the
reactor at 1.0.
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An integral (wrap around) shield was assumed with a constant
2.5 foot thickness and a specific gravity of 8. 0. The gross weight
required to carry the shield and a 30,000 pound payload plus aux-
iliary welght 1s plotted against the reactor unilt heat release in
Btu per second per cubic inch of reactor. The heat exchanger
effective wall temperature is 2000° R, and the compressor presgure
ratio, heat exchanger inlet Mach number, and turbine-inlet tempera-
ture are optimum.

L]
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Reducing the resctor size below 2.5 feet does not materially
change the gross weight, but the reactor unit heat release lncreases
rapidly. Increasing the reactor size gbove 3.5 feet causes a rapid
increase 1in gross welght while the reactor unlit heat release is not
80 greatly affected. At low reactor diameters the unit heat release
is much greater for the 1.5 flight Mach mumber than for 0.9 Mach mum-
ber, however, this difference decreases for larger reactors.

SUMMARY OF RESULTS

An analysis of the muclear powered liquid-metal turbojet cycle is
presented for a wide range of engine operating conditions and for
several flight conditions. The followlng results were obtained from -
the Ilnvestigations:

1. For optimum compressor pressure rgatlo and turbine-lnlet tempera-
ture, the optimum heat exchanger inlet Mach number rangee from 0.15 to
0.16 for a flight Msch number of 0.9 and heat exchanger effective wall
temperatures of 1400° to 2600° R. For a flight Mach number of 1.5, the
optimum heat exchanger inlet Mach number wvarles from 0.18 to 0.18 for
heat exchanger effective wall temperatures of 1200° to 2600° R.

2. The optlmum compressor pressure ratio at optimum turbine-inlet
temperature vaeries from sbout 4.0 to 7.5 at aliltudes of 30,000 and
50,000 feet at a flight Mach mumber of 0.9, for heat exchanger effect-
ive wall temperatures of 1400° to 2600° R. At a flight Mach nurber of
1.5, the optimum compressor pressure ratio variles from.z 5 to 5.5 for
heat exchanger effective wall temperatures from 1600 to 2600° R.

5. The difference between the heat exchanger effective wall
temperature and the turbine-inlet temperature Ty-T3, varies from 150°
to 250° R for a flight Mach number of 0.9 for a range of T, from
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1600° to 2400° R. For a Fflight Mach number of 1.5, Ty-T3 varies from
150° R to 350° R for a range of T, from 1600° to 2600° R.

4. Engine and exchanger welght assumptions change the magnitude
of thrust per englne plus exchanger welght, but do not affect the
values of compressor pressure ratio, heat exchanger inlet Mach number,
and turbine-inlet temperature which give maximim thrust per engine plus
exchanger weight, provided that the engine weight is changed proportion-
ally at all pressure ratios and that the exchanger weight 1s assumed
to vary directly with air flow area and length-diameter ratio of the
flow passeges. ’

5. Adlrplane gross welght at an altitude of 30,000 feet and Mach
rmumbers of 0.2 and 1.5 is relatively lnsensitive to reactor maximum
wall temperatures as low &g 1600° R. At 50,000 feet altitude and 0.9
Mach number, the airplane is insensitive to T as low as 1800° R and
at a Mech number of 1.5, Wg 1is insensitive to Tp as low as 2000° R.

6. Airplane gross weight is relatively insensitive to flight Mach
muwrber, but reactor heat release increases rapldly with increasing
flight Mach number. Both alrplane gross weight and reasctor heat release
are insensitive to altitude below 35,000 feet, but increase rapidly with
increasging altitude above 35,000 feet.

7. For a flight Mach number of 1.5 at 50,000 feet altitude, neacelle
drag becomes very significant. For a 500,000 pound eilrplane the reactor
meximm wall temperature must be increased from 1600° to 2200° R if =
nacelle drag coefficient of 0.2 is taken into account.

Lewis Flight Propulsion Le&boratory,
Neational Advisory Commlttee for Aeronsutics,
Cleveland, Ohio
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APPENDIX A

Engine operating data was calculated and prepared in the form
of charts to aid in the analysls. The data 1s presented on a
corrected basis and includes campressor outlet temperature,; turbilne
pressure ratlio, turbine ocutlet temperature, and engine net thrust
per pound of ailr per second neglecting nacelle drag.

Flgure 22 shows corrected compressor outlet temperature as a
function of compressor pressure ratioc. Figurese 23 and 24 show turbilne
Pressure ratio and corrected outlet temperature as a function of
corrected turbine-inlet temperature for a range of compressor pressure

ratios.

Figures 25(a) to 25(j) show the corrected engine net thrust per
pound of alr per second for a range of corrected turbine-inlet tempera-
tures as a function of pressure ratio across the heat exchanger. Parts
() to (f) show the corrected net thrust per pound of air per second
for a flight Mach number of 0.9 at compressor pressure ratios of 1, 3,
5, 10, and 15. Parts (g) to (J) show the corrected net thrust per
pound of air per. second at the same pressuré ratlos for a flight Mech

mumber of 1.5.

%Y
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APPENDIX B

A teble of weights, slizes, and operatlng variables of the com-
ponents of the nueclear powered liquid-metal turbojet airplane is pre-
sented for Mach numbers of 0.9 and 1.5 at altibudes of 30,000 and
50,000 feet. The engine in all cases is operating with a heat
exchanger effective wall temperature of 2000° R and turbine-inlet
temperature of 1700° R. The heat exchanger inlet Mach number is
optimum and the compressor pressure ratio is close to optimum.
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Flight condition
Design eltitude
Flight Mach number
Design point L/D

Operating polnt _ . o
Heat exchanger wall temperature, R
Turbine-inlet temperature, °R
Compressor pressure ratioc

Component weights, 1b
Reactor shield, payload, aux. eq.
Engine -
Heat exchangers
Airplane structure
Alrplane gross weight

Reactor . A . _
Heat release, Btu/sec :
Maximum wall tempera’.ture6 Or
Lithium temperature in, “R
Lithium temperature out, °R
Lithium velocity, ft/sec

Engine ’ -

NWet thrust per engine plus exchanger
weight, 1h/1b

Net thrust per air flow, 1b/1b air/sec

Total engine air flow, 1b/sec

Net engine thrust, 1b

Compressor frontal area, 2

Heat exchanger _
Lithium temperature in, °R
Lithium temperature out, °R
Alr inlet Mach number
Air inlet temperature, °R
Air outlet temperature, °R
Alr enthealpy rise, Btu/ib air
Core frontal area, P12

30,000
0.9
18

2000
1700

190,000
11,100
4,000

515,500

105,000
2050
1954
2046
15.6

1.17

38.2
457
17,500

3T

2048
1954
0.162
804
1700
230
26

50,000
0.9
18

2000
1700

190,000
27,000

8,300
126,700
352,000

117,000
2050
1952
2048
16.8

0.5086

40.6
492
20,100
100

2048
1952
0.18
766
1700
238
71

30,000
1.5

2000
1700
3.5

190, 000
13,900
5,900
113,000
322,800

248,000
2100
1910
2080
18.8

l.82

30.2
1180
35,800
49

2090
1910
0.19
886
1700
210
58

50, 000
1.5

2000
1700
3.5

190,000
37,500
13,700
129,800
371,000

280, 000
2150
1862
2138
13.8

0.803

32.7
1267
41,200
133

2138
1862
0.18
845
1700
221

X123
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